unique salt shifts energy production inland
Last Updated : GMT 06:49:16
Arab Today, arab today
Arab Today, arab today
Last Updated : GMT 06:49:16
Arab Today, arab today

Unique salt shifts energy production inland

Arab Today, arab today

Arab Today, arab today Unique salt shifts energy production inland

London - Arabstoday

Production of energy from the difference between salt water and fresh water is most convenient near the oceans, but a new solution could make production possible inland, too. Using an ammonium bicarbonate salt solution, researchers can combine bacterial degradation of waste water with energy extracted from the salt-water fresh-water gradient to produce power anywhere. “We are taking two technologies, each having limitations, and putting them together,” says Bruce E. Logan, professor of environmental engineering at Penn State. “Combined, they overcome the limitations of the individual technologies.” The technologies Logan refers to are microbial fuel cells (MFC)—which use wastewater and naturally occurring bacteria to produce electricity—and reverse electrodialysis (RED)—which produces electricity directly from the salinity gradient between salty and fresh water. The combined technology uses an ammonium bicarbonate salt solution to create a microbial reverse-electrodialysis cell (MRC) that is described in the journal Science Express. RED stacks extract energy from the ionic difference between fresh water and salt water. A stack consists of alternating ion exchange membranes—positive and negative—with each RED membrane pair contributing additively to the electrical output. Unfortunately, using only RED stacks to produce electricity is difficult because a large number of membranes is required when using water at the electrodes, due to the need for water electrolysis. Using exoelectrogenic bacteria—bacteria found in wastewater that consume organic material and produce an electric current—reduces the number of stacks needed and increases electric production by the bacteria. Logan, working with Roland Cusick, graduate student in environmental engineering, and postdoctoral fellow Younggy Kim, placed a RED stack between the electrodes of an MFC to form the MRC. While the researchers previously showed that an MRC can work with natural seawater, the organic matter in water will foul the membranes without extensive precleaning and treatment of the water. Seawater use restricts MRC operation to coastal areas, but food waste, domestic waste, and animal waste contain about 17 gigawatts of power throughout the U.S. One nuclear reactor typically produces 1 gigawatt. Rather than rely on seawater, the researchers used ammonium bicarbonate, an unusual salt. An ammonium bicarbonate solution works similarly to seawater in the MRC and will not foul the membranes. The ammonium bicarbonate is also easily removed from the water above 110 degrees Fahrenheit. The ammonia and carbon dioxide that make up the salt boil out, and are recaptured and recombined for reuse. “Waste heat makes up 7 to 17 percent of energy consumed in industrial processes,” Logan says.”There is always a source of waste heat near where this process could take place and it usually goes unused.” The researchers tested their ammonium bicarbonate MRC and found that the initial production of electricity was greater than that from an MRC using seawater. “The bacteria in the cell quickly used up all the dissolved organic material,” says Logan. “This is the portion of wastewater that is usually the most difficult to remove and requires trickling filters, while the particulate portion which took longer for the bacteria to consume, is more easily removed.” The researchers tested the MRC only in a fill and empty mode, but eventually a stream of wastewater would be run through the cell. According to Logan, MRCs can be configured to produce electricity or hydrogen, making both without contributing to greenhouse gases like carbon dioxide. The MRC tested produced 5.6 watts per square meter. Also, not having to process wastewater would save about 60 gigawatts. The King Abdullah University of Science and Technology supported this work.

arabstoday
arabstoday

Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

unique salt shifts energy production inland unique salt shifts energy production inland

 



Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

unique salt shifts energy production inland unique salt shifts energy production inland

 



GMT 23:30 2011 Thursday ,03 March

American top cardiologist Dr. Goldberg

GMT 09:11 2017 Sunday ,31 December

Palestinian officials slam controversial remarks

GMT 12:46 2017 Sunday ,03 December

Philipp, Castro add to Dortmund's injury woes

GMT 18:07 2017 Sunday ,22 January

4 al-Qaeda members killed in Yemen drone strikes

GMT 17:22 2017 Saturday ,29 July

China, Russia responsible for N.Korea threat

GMT 00:54 2017 Saturday ,08 April

Dh1m for stories of hope in the Arab world

GMT 14:24 2017 Saturday ,16 September

LUSH launches new perfume range Volume IV

GMT 14:55 2014 Wednesday ,16 July

Sheikha Fatima offers 60m gift

GMT 13:30 2017 Tuesday ,28 November

Tokyo stocks snap three-day winning streak
Arab Today, arab today
 
 Arab Today Facebook,arab today facebook  Arab Today Twitter,arab today twitter Arab Today Rss,arab today rss  Arab Today Youtube,arab today youtube  Arab Today Youtube,arab today youtube

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

arabstoday arabstoday arabstoday arabstoday
arabstoday arabstoday arabstoday
arabstoday
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
arabstoday, Arabstoday, Arabstoday