To make the soil additive biochar, charcoal must reach at least 450 degrees Celsius to ensure that water and nutrients get to plants. The findings from a new study, published in the Journal of Biomass and Bioenergy, are timely because biochar is attracting thousands of amateur and professional gardeners, and some companies are also scaling up industrial biochar production. “When it’s done right, adding biochar to soil can improve hydrology and make more nutrients available to plants,” says Rice University biogeochemist Caroline Masiello, the lead researcher. The practice of adding biochar to topsoil to boost crop growth goes back centuries, but in recent years, international interest groups have begun touting biochar’s climate benefits as well. Biochar removes carbon from the atmosphere and locks it into the soil for hundreds and sometimes thousands of years. With companies scaling up production and dozens of do-it-yourself videos online showing how to make biochar at home, Masiello says it is important for scientists to study examine how biochar is produced and learn which methods produce the best biochar. In their study, Masiello’s team learned that when it comes to helping get water to plants, not all forms of biochar are the same. The researchers found charcoal produced at temperatures of 450 Celsius (842 Fahrenheit) or higher was most likely to improve soil drainage and make more water available to plants, while charcoal produced at lower temperatures could sometimes repel water. Rice’s biochar research group examined the hydrologic properties of biochar produced at various temperatures from three kinds of feedstock—tree leaves, corn stalks, and wood chips. For all feedstocks, the researchers found that biochar produced at temperatures above 450 degrees Celsius had optimal properties for improving soil drainage and storing carbon. Biochar’s roots Making charcoal may sound like a strange way to boost crop production, but the concept was proven more than 2,000 years ago in South America, where native farmers added charcoal to the poor soils of the Amazon rainforest to create a rich, fertile soil known by the Portuguese name “terra preta,” or black earth. These modified soils, which are still fertile today, contain as much as 35 percent of their organic carbon in the form of charcoal. Studies over the past decade have found that the charcoal-amended soil holds more water and nutrients and also makes the water and nutrients readily available to plants. The charcoal, or biochar, that is used to create such soil can be made from wood or agricultural byproducts. The key is to heat the material to a high temperature in an oxygen-starved environment. Native Americans did that by burying the material in pits, where it burned for days. Today, industrial-scale biochar production is beginning to occur, and dozens of do-it-yourself videos online show how to make biochar in just a few hours using steel drums. Carbon-cycling The agricultural benefits of biochar are just one reason there’s a groundswell of interest in biochar production. Some enthusiasts are drawn by a desire to fight global warming. That’s because about half of the carbon from wood chips, corn stalks, and other biomass—carbon that typically gets recycled into the atmosphere—can be locked away inside biochar for thousands of years. “When people mow their yards here in Houston, the carbon from the grass clippings returns to the atmosphere in about six weeks,” says Masiello, assistant professor of Earth science at Rice. “We call this carbon-cycling, and it’s a universal process. Making biochar is one way to remove carbon from the atmosphere and lock it away for a long time.” Masiello, who specializes in studying the carbon cycle, says the microscopic properties of biochar can vary widely depending upon how it’s made. In the worst case, she says, improperly made biochar can harm soil rather than improve it. “This is the first rigorous study of the hydrologic aspects of biochar,” Masiello says. “People often tout the benefits of biochar; it can help clay-rich soils drain better, and it can help sandy soils hold water better. But we are finding that these hydrologic benefits vary widely with biochar production conditions.” She says the study found that biochar produced at temperatures lower than 450 degrees Celsius retained some organic compounds that can actually repel water rather than attract it. In addition, the study found that lower-temperature biochar was a less stable reservoir for carbon and could return significant amounts of carbon to the atmosphere within a few hundred years. “We plan to study ways to optimize other beneficial properties of biochar, including its ability to remove heavy metals and other pollutants from soil,” Masiello says. “Ultimately, we’d like to publish a how-to guide that would show exactly what conditions are needed to produce the optimal biochar for a given situation.” The research team included additional researchers from Rice, as well as from Bellaire High School, Baylor University, and Bard College. The research was funded by the National Science Foundation and the Department of Energy.
GMT 09:31 2018 Wednesday ,24 January
Over 100 endangered turtles hatch in SingaporeGMT 04:45 2018 Friday ,19 January
Microwave ovens are cooking the environment: studyGMT 12:28 2018 Saturday ,06 January
Bonobos prefer bullies over 'nice guys'GMT 17:42 2017 Wednesday ,18 October
N. Korea nuclear test site may be a 'Tired Mountain'GMT 19:57 2017 Wednesday ,06 September
Russian ecologists: Nord Stream 2 damages precious refugeGMT 03:12 2017 Monday ,04 September
NATO condemns North Korea’s sixth nuclear testGMT 19:41 2017 Monday ,14 August
Bear shot in Italy after attacking walkerGMT 11:01 2017 Tuesday ,08 August
Birthplace of Apostle Peter found in IsraelMaintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor