In proof-of-concept experiments, researchers demonstrate the ability to tune medically relevant cell behaviors by manipulating a key hub in cell communication networks. The manipulation of this communication node makes it possible to reprogram large parts of a cell's signaling network instead of targeting only a single receptor or cell signaling pathway.
The potential clinical value of the basic science discovery is the ability to eventually develop techniques -- drugs or gene therapy approaches, for example -- that could slow or reverse the progression of diseases, such as cancer, which are driven by abnormal cell signaling along multiple upstream pathways.
"Our study shows the feasibility of targeting a hub in the cell signaling network to reset aberrant cell signaling from multiple pathways and receptors," said senior author Pradipta Ghosh, MD, an associate professor of medicine.
Specifically, the UC San Diego team has engineered two peptides -- protein fragments -- to either turn on or turn off activity in a family of proteins called G proteins.
G protein-coupled receptors, commonly found on the surface of cells, enable cells to sense and respond to what is happening around them. About 30 percent of all prescription drugs affect cells via G protein-coupled receptors.
Researchers, including members of the UC San Diego team, recently discovered that G proteins can also be activated inside cells -- not just on cell membranes -- by other receptors, including a protein called GIV. Its activity is implicated in cancer metastasis and other disease states. Both the "on" and "off" peptides were made from a piece of the GIV protein receptor.
In a series of cell culture experiments, the "on" peptides were shown to accelerate cells' ability to migrate after scratch-wounding, a process linked to wound healing. The "off" peptide, in contrast, reduced the aggressiveness of cancer cells and reduced the production of collagen by cells associated with liver fibrosis. In experiments with mice, the topical application of the "on" peptides helped skin wounds heal faster.
"The takeaway is that we can begin to tap an emerging new paradigm of G protein signaling," Ghosh said.
GMT 08:29 2018 Sunday ,21 January
Hot air? Study finds bikram no healthier than other yogaGMT 05:12 2018 Saturday ,13 January
'How much do you earn?' Germany takes on gender pay gapGMT 02:56 2017 Friday ,15 December
Will Trump send Americans to the Moon? Money talksGMT 04:01 2017 Saturday ,18 November
What is the Paris Agreement?GMT 07:05 2017 Thursday ,09 November
Could the peatlands of Congo be a carbon bomb?GMT 04:49 2017 Wednesday ,13 September
So how do mega-storms get named, anyhow?GMT 16:43 2017 Wednesday ,09 August
Want to learn something? Sleep on it, but not too deeplyGMT 21:25 2017 Monday ,31 July
Is 'diesel summit' the last chance for Germany's favourite engine?Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor