earthsize diamond in space white dwarf
Last Updated : GMT 06:49:16
Arab Today, arab today
Arab Today, arab today
Last Updated : GMT 06:49:16
Arab Today, arab today

Earth-size 'diamond' in space: White Dwarf

Arab Today, arab today

Arab Today, arab today Earth-size 'diamond' in space: White Dwarf

White Dwarf
Tehran - FNA

Astronomers identified possibly the coldest, faintest white dwarf star ever detected. This ancient stellar remnant is so cool that its carbon has crystallized, forming -- in effect -- an Earth-size diamond in space. The object in this new study is likely the same age as the Milky Way, approximately 11 billion years old.
A team of astronomers has identified possibly the coldest, faintest white dwarf star ever detected. This ancient stellar remnant is so cool that its carbon has crystallized, forming -- in effect -- an Earth-size diamond in space.
"It's a really remarkable object," said David Kaplan, a professor at the University of Wisconsin-Milwaukee. "These things should be out there, but because they are so dim they are very hard to find."
Kaplan and his colleagues found this stellar gem using the National Radio Astronomy Observatory's (NRAO) Green Bank Telescope (GBT) and Very Long Baseline Array (VLBA), as well as other observatories.
White dwarfs are the extremely dense end-states of stars like our Sun that have collapsed to form an object approximately the size of Earth. Composed mostly of carbon and oxygen, white dwarfs slowly cool and fade over billions of years. The object in this new study is likely the same age as the Milky Way, approximately 11 billion years old.
Pulsars are rapidly spinning neutron stars, the superdense remains of massive stars that have exploded as supernovas. As neutron stars spin, lighthouse-like beams of radio waves, streaming from the poles of its powerful magnetic field, sweep through space. When one of these beams sweeps across Earth, radio telescopes can capture the pulse of radio waves.
The pulsar companion to this white dwarf, dubbed PSR J2222-0137, was the first object in this system to be detected. It was found using the GBT by Jason Boyles, then a graduate student at West Virginia University in Morgantown.
These first observations revealed that the pulsar was spinning more than 30 times each second and was gravitationally bound to a companion star, which was initially identified as either another neutron star or, more likely, an uncommonly cool white dwarf. The two were calculated to orbit each other once every 2.45 days.
The pulsar was then observed over a two-year period with the VLBA by Adam Deller, an astronomer at the Netherlands Institute for Radio Astronomy (ASTRON). These observations pinpointed its location and distance from Earth -- approximately 900 light-years away in the direction of the constellation Aquarius. This information was critical in refining the model used to time the arrival of the pulses at Earth with the GBT.
By applying Einstein's theory of relativity, the researchers studied how the gravity of the companion warped space, causing delays in the radio signal as the pulsar passed behind it. These delayed travel times helped the researchers determine the orientation of their orbit and the individual masses of the two stars. The pulsar has a mass 1.2 times that of the Sun and the companion a mass 1.05 times that of the Sun.
These data strongly indicated that the pulsar companion could not have been a second neutron star; the orbits were too orderly for a second supernova to have taken place.
Knowing its location with such high precision and how bright a white dwarf should appear at that distance, the astronomers believed they should have been able to observe it in optical and infrared light.
Remarkably, neither the Southern Astrophysical Research (SOAR) telescope in Chile nor the 10-meter Keck telescope in Hawaii was able to detect it.
"Our final image should show us a companion 100 times fainter than any other white dwarf orbiting a neutron star and about 10 times fainter than any known white dwarf, but we don't see a thing," said Bart Dunlap, a graduate student at the University of North Carolina at Chapel Hill and one of the team members. "If there's a white dwarf there, and there almost certainly is, it must be extremely cold."
The researchers calculated that the white dwarf would be no more than a comparatively cool 3,000 degrees Kelvin (2,700 degrees Celsius). Our Sun at its center is about 5,000 times hotter.
Astronomers believe that such a cool, collapsed star would be largely crystallized carbon, not unlike a diamond. Other such stars have been identified and they are theoretically not that rare, but with a low intrinsic brightness, they can be deucedly difficult to detect. Its fortuitous location in a binary system with a neutron star enabled the team to identify this one.

 

arabstoday
arabstoday

Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

earthsize diamond in space white dwarf earthsize diamond in space white dwarf

 



Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

earthsize diamond in space white dwarf earthsize diamond in space white dwarf

 



GMT 09:27 2017 Tuesday ,10 October

Macron takes EU reform push to Germany book fair

GMT 12:50 2017 Sunday ,03 December

Shiffrin bags first downhill win

GMT 10:33 2016 Friday ,08 April

Carter v Nonu as Racing eye Toulon's scalp

GMT 10:57 2017 Wednesday ,09 August

Iran's Rouhani names female VPs

GMT 11:21 2017 Monday ,20 February

Tunisian court tries suspects over violence charges

GMT 20:52 2017 Thursday ,30 November

Honeywell to maintain A380, B777 components for Emirates

GMT 02:36 2017 Thursday ,23 November

Casablanca’s president hails achievement

GMT 19:18 2017 Wednesday ,18 October

Investment sector attend Saudi Investment Initiative

GMT 07:08 2016 Tuesday ,28 June

Hodgson pays price for sorry England
Arab Today, arab today
 
 Arab Today Facebook,arab today facebook  Arab Today Twitter,arab today twitter Arab Today Rss,arab today rss  Arab Today Youtube,arab today youtube  Arab Today Youtube,arab today youtube

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

arabstoday arabstoday arabstoday arabstoday
arabstoday arabstoday arabstoday
arabstoday
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
arabstoday, Arabstoday, Arabstoday