Astrophysicists from the University of Zurich present on Thursday the world's first realistic simulation of the formation of our home galaxy together with astronomers from the University of California at Santa Cruz. The new results were partly calculated on the computer of the Swiss National Supercomputing Center (CSCS) and show, for instance, that there has to be stars on the outer edge of the Milky Way. The new simulation confirms the results for the formation of disk-shaped dwarf galaxies published by Mayer and demonstrates that the model - unlike all previous approaches - can recreate both small and extremely large galaxies realistically. Moreover, from the simulation it an also be deduced that protogalaxies with a large disk made of gases and stars at the center already formed a billion years after the Big Bang, and therefore long before our present galaxies. The simulation also predicts stars and gases for the outer halo of the Milky Way six hundred thousand light years away. Only the next generation of space probes and telescopes will be able to detect these extremely faint stars. Being able to simulate a complex system like the formation of the Milky Way realistically is the ultimate proof that the underlying theories of astrophysics are correct, said the University of Zurich in a press release. All previous attempts to recreate the formation of spiral galaxies like the Milky Way faltered on one of two points: Either the simulated spiral galaxies displayed too many stars at the center or the overall stellar mass was several times too big. A research group jointly runs by Lucio Mayer, an astrophysicist at the University of Zurich, and Piero Madau, an astronomer at University of California at Santa Cruz, is now publishing the first realistic simulation of the formation of the Milky Way in the Astrophysical Journal. For their study, the scientists developed a highly complex simulation in which a spiral galaxy similar to the Milky Way develops by itself without further intervention. "Our result shows that a realistic spiral galaxy can be formed based on the basic principles of the cold dark matter paradigm and the physical laws of gravity, fluid dynamics and radiophysics," explains Mayer. The simulation also shows that in an entity that is supposed to develop into a spiral galaxy, the stars in the areas with giant cloud gas complexes have to form. In these cold molecular giant clouds, the gases exhibit extremely high densities. The star formation and distribution there does not occur uniformly, but rather in clumps and clusters. This in turn results in a considerably greater build-up of heat through local supernova explosions. Through this massive build-up of heat, visible standard matter is removed at high redshift. This prevents the formation of a concave disk in the center of the galaxy. The removal of baryonic matter, as the visible standard matter is also known, also reduces the overall mass of the gas present at the center. This results in the formation of the correct stellar mass, as can be observed in the Milky Way. At the end of the simulation, a thin, curved disk results that corresponds fully to the astronomical observations of the Milky Way in terms of the mass, angular momentum and rotation velocity ratios. For the calculations, the model Mayer and co. developed for the simulation of disk-shaped dwarf galaxies and published in the journal Nature in 2010 was refined. The high-resolution model simulates the formation of a galaxy with 790 billion solar masses and comprises 18.6 million particles, from which gases, dark matter and stars form.
GMT 17:42 2018 Wednesday ,31 October
Launch of cargo spacecraft Progress MS-10 to ISS set for 16 NovemberGMT 14:18 2018 Saturday ,27 October
First launch of Soyuz-FG booster after Oct 11 incident scheduled on 16 NovGMT 16:58 2018 Monday ,22 October
Report on Soyuz-FG vehicle malfunction to be approved on 30 OctoberGMT 22:05 2018 Friday ,19 October
NASA chief believes human mission to Mars should become international projectGMT 16:31 2018 Monday ,15 October
Roscosmos chief to inform NASA and ESA on probe into Soyuz booster incidentGMT 18:09 2018 Thursday ,11 October
Russia to provide NASA with full information on Soyuz emergency landingGMT 16:09 2018 Thursday ,11 October
President Putin to receive report on aborted Soyuz space launch to ISSGMT 10:49 2018 Friday ,19 January
Amazon narrows list of 'HQ2' candidates to 20Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor