One of the fundamental challenges of battery technology is that lithium-ion batteries — by far the best general option for energy storage currently in wide commercial use — are intrinsically bulky and heavy.
A new research team at the University of Central Florida believes they can challenge that problem by turning copper wires into supercapacitors, then embedding those wires into the fabric of your clothing or the body of a device. In theory, they could also be embedded throughout the body of a car, significantly boosting total energy storage and freeing up space in the trunk, Extremetech reported.
According to nanotechnology researcher Jayan Thomas, his work on the concept involves first heating copper wire to create nano-whiskers — nanoscale-sized tendrils of metal that split off from the main wire. These are then protected by a sheath of naturally forming copper oxide (produced when the wire is heated in air). This turns the nanowhisker into an electrode. The entire structure is then wrapped in a plastic sheath, with a second set of nanowhiskers. The end result is a layered structure that looks like the feature image above — the copper wire in the center still conducts power, but the nanoscale structures store additional electricity as well.
Supercapacitor or battery?
Some write-ups are describing this as a type of battery, but the authors refer to it as a supercapacitor, and that designation appears to make more sense. The difference between supercapacitors and batteries, from a functional standpoint, is that batteries can store significantly more energy than a supercapacitor, but cannot release that energy nearly as quickly. Supercapacitors store less energy in total, but can discharge it nearly instantly. Supercapacitors tend to make poor batteries and vice versa, despite continuing research to find a way to blend the two.
The real question is how much energy can be feasibly stored in this type of copper wire and how effectively the nanostructures can be recharged without degrading. While the author talks of weight and bulk savings, copper is significantly heavier than metals like aluminum, and the extra shielding required will have its own weight. This ability to embed supercapacitor capability into virtually any surface could have a significant impact in some fields, but only if it winds up saving space or weight compared to existing methods. Efforts to incorporate traditional lithium-ion batteries into flexible cables have also been developed; LG demonstrated this type of structure two years ago.
GMT 16:03 2018 Wednesday ,28 November
Executive Office of Arab Ministers of Communications starts in CairoGMT 09:12 2018 Thursday ,15 November
Syria, Iran discuss enhancing scientific cooperationGMT 17:45 2018 Wednesday ,31 October
Next expedition may go to ISS on 3 DecemberGMT 13:56 2018 Saturday ,27 October
Head of Soviet space shuttle program dies aged 89GMT 15:58 2018 Monday ,15 October
Crew scheduled to go to ISS to remain unchangedGMT 10:57 2018 Saturday ,13 October
Expert says crewless ISS poses risk of station’s lossGMT 18:49 2018 Thursday ,11 October
Soyuz-FG suffers setback in 165th second of flightGMT 17:53 2018 Sunday ,07 October
Science, technologies to be bridge between Russian and JapanMaintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor