As you probably know, from sucking down cans of Coke and masticating on candy, sugar — glucose, fructose, sucrose, dextrose — is an excellent source of energy. Biologically speaking, sugar molecules are energy-dense, easy to transport, and cheap to digest. There is a reason why almost every living cell on Earth generates its energy (ATP) from glucose. Now, researchers at Virginia Tech have successfully created a sugar-powered fuel cell that has an energy storage density of 596 amp-hours per kilo — or “one order of magnitude” higher than lithium-ion batteries. This fuel cell is refillable with a solution of maltodextrin, and its only by products are electricity and water. The chief researcher, Y.H. Percival Zhang, says the tech could be commercialized in as soon as three years. Now, it’s not exactly news that sugar is an excellent energy source. As a culture we’ve probably known about it since before we were Homo sapiens. The problem is, unless you’re a living organism or some kind of incendiary device, extracting that energy is difficult. In nature, an enzymatic pathway is used — a production line of tailor-made enzymes that meddle with the glucose molecules until they become ATP. Because it’s easy enough to produce enzymes in large quantities, researchers have tried to create fuel cells that use artificial “metabolism” to break down glucose into electricity (biobatteries), but it has historically proven very hard to find the right pathway for maximum efficiency and to keep the enzymes in the right place over a long period of time. The Virginia Tech biobattery uses 13 enzymes, plus air (it’s an air-breathing biobattery), to produce nearly 24 electrons from a single glucose unit. This equates to a power output of 0.8 mW/cm, current density of 6 mA/cm, and energy storage density of 596 Ah/kg. This last figure is impressive, at roughly 10 times the energy density of the lithium-ion batteries in your mobile devices. [Research paper: doi:10.1038/ncomms4026 - "A high-energy-density sugar biobattery based on a synthetic enzymatic pathway"] If Zhang’s biobatteries pan out, you might soon be recharging your smartphone by pouring in a solution of 15% maltodextrin. That battery would not only be very safe (it produces water and electricity), but very cheap to run and very green. This seems to fit in perfectly with Zhang’s homepage, which talks about how his main goals in life are replacing crude oil with sugar, and feeding the world. The other area in which biobatteries might be useful is powering implanted devices, such as pacemakers — or, in the future, subcutaneous sensors and computers. Such a biobattery could feed on the glucose in your bloodstream, providing an endless supply of safe electricity for the myriad implants that futuristic technocrats will surely have.
GMT 16:03 2018 Wednesday ,28 November
Executive Office of Arab Ministers of Communications starts in CairoGMT 09:12 2018 Thursday ,15 November
Syria, Iran discuss enhancing scientific cooperationGMT 17:45 2018 Wednesday ,31 October
Next expedition may go to ISS on 3 DecemberGMT 13:56 2018 Saturday ,27 October
Head of Soviet space shuttle program dies aged 89GMT 15:58 2018 Monday ,15 October
Crew scheduled to go to ISS to remain unchangedGMT 10:57 2018 Saturday ,13 October
Expert says crewless ISS poses risk of station’s lossGMT 18:49 2018 Thursday ,11 October
Soyuz-FG suffers setback in 165th second of flightGMT 17:53 2018 Sunday ,07 October
Science, technologies to be bridge between Russian and JapanMaintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor