Scientists on Wednesday said they had recorded the first real-time images of atoms moving in a molecule, a feat that captured movement lasting less than one millionth of a billionth of a second. The exploit entailed directing an ultra-fast laser onto molecules of nitrogen and of oxygen. Its pulse of light knocked a single electron out of its orbit around one of the atoms. The electron tumbled back onto the molecule, causing a tiny collision that, like ripples in a pond, proved a "backlight" of energy. Sensors picked up a movement of joined atoms vibrating. The research, published in the journal Nature, was headed by Louis DiMauro, a professor of physics of Ohio State University. The molecules that were studied are very simple -- oxygen and nitrogen make up most of the atmosphere -- but the hope is to progress to imaging of more interesting fare. Drug designers could be among the beneficiaries. "You could use this to study individual atoms," DiMauro said in a press release. "But the greater impact to science will come when we can study reactions between more complex molecules. Looking at two atoms -- that's a long way from studying a more interesting molecule like a protein." In a separate technical breakthrough, also reported in Nature, physicists at CERN used microwaves to manipulate "anti-matter" atoms, once a staple of sci-fi but now one of the big frontiers of particle research. In theory, there should be equal amounts of matter and its opposite, known as anti-matter, as a result of the Big Bang that created the cosmos. But clearly there is not, otherwise the physical Universe would not exist. When a matter atom meets an anti-matter atom, they cancel each other out in a burst of energy. So, for some reason, there is a far greater abundance of matter than anti-matter. Scientists poring over this mystery have laboured to find out more about elusive anti-matter atoms. In recent years, they have isolated anti-atoms and then stored them -- but handling them is a fiendishly hard task, given the risk of destroying them through mere contact. The latest achievement, led by the so-called ALPHA team at CERN (European Center for Nuclear Research) in Geneva, entailed confining antihydrogen atoms in a magnetic trap and bombarding them with microwaves. The energy kick forced the atoms out of the trap, providing some vital clues about their properties -- an "anti-atomic fingerprint," in the scientists' words.
GMT 16:03 2018 Wednesday ,28 November
Executive Office of Arab Ministers of Communications starts in CairoGMT 09:12 2018 Thursday ,15 November
Syria, Iran discuss enhancing scientific cooperationGMT 17:45 2018 Wednesday ,31 October
Next expedition may go to ISS on 3 DecemberGMT 13:56 2018 Saturday ,27 October
Head of Soviet space shuttle program dies aged 89GMT 15:58 2018 Monday ,15 October
Crew scheduled to go to ISS to remain unchangedGMT 10:57 2018 Saturday ,13 October
Expert says crewless ISS poses risk of station’s lossGMT 18:49 2018 Thursday ,11 October
Soyuz-FG suffers setback in 165th second of flightGMT 17:53 2018 Sunday ,07 October
Science, technologies to be bridge between Russian and JapanMaintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor