A team led by scientists at The Scripps Research Institute and the University of California (UC) San Diego has discovered a new type of dynamic change in human stem cells. Last year, this team reported recurrent changes in the genomes of human pluripotent stem cells as they are expanded in culture. The current report, which appears in the journal Cell Stem Cell, shows that these cells can also change their epigenomes, the patterns of DNA modifications that regulate the activity of specific genes - sometimes radically. These changes may influence the cells' abilities to serve as models of human disease and development. "Our results show that human pluripotent stem cells change during expansion and differentiation in ways that are not easily detected, but that have important implications in using these cells for basic and clinical research," said team leader Louise Laurent, assistant professor in the UC San Diego School of Medicine. Human pluripotent stem cells can give rise to virtually every type of cell in the body. Because of this remarkable quality, they hold huge potential for cell replacement therapies and drug development. Many avenues of stem cell research focus on determining how genes are turned on and off during the course of normal development or at the onset of a disease transformation. It is widely accepted that gene activation and silencing play important roles in transforming all-purpose stem cells into the specific adult cell types that make up the specialized tissues of organs such as the heart and brain. In the new study, Laurent and her collaborator, Professor Jeanne Loring of Scripps Research, and their colleagues focused on understanding gene silencing via DNA methylation, a process whereby bits of DNA are chemically marked with tags that prevent the genes from being expressed, effectively switching them off. Errors in gene silencing via DNA methylation are known contributors to serious developmental defects and cancer. Specifically, the team assessed the state of both DNA methylation and gene expression in the most comprehensive set of human stem cell samples to date, comprised of more than 200 human pluripotent stem cell samples from more than 100 cell lines, along with 80 adult cell samples representing 17 distinct tissue types. The researchers used a new global DNA methylation array, developed in collaboration with Illumina, Inc, which detects the methylation state of 450,000 sites in the human genome. The results showed surprising changes in patterns of DNA methylation in the stem cells. Because of the unprecedented breadth of the study, the researchers were able to determine the frequency of different types of changes. One of the anomalies highlighted by the study centers on X chromosomes. Since female cells contain two X chromosomes and males only one, one of the X chromosomes in females is normally silenced by DNA methylation through a process called X-chromosome inactivation (XCI). The new study demonstrated that a majority of female human pluripotent stem cells cultured in the lab lost their X chromosome inactivation over time, resulting in cells with two active X chromosomes.
GMT 13:50 2018 Tuesday ,30 October
Emergency surgery saves life of touristGMT 13:20 2018 Monday ,29 October
National campaign to raise awareness of breast cancerGMT 14:34 2018 Friday ,19 October
Birth spacing "improving health of Omani women"GMT 15:35 2018 Thursday ,11 October
Russia to discuss issue of biological labs near its bordersGMT 16:14 2018 Saturday ,29 September
Premier Khalifa bin Salman congratulated by health ministerGMT 16:10 2018 Saturday ,29 September
Bahrain to host Dermatology, Laser and Aesthetics ConferenceGMT 12:44 2018 Friday ,28 September
EU proposes €40 million for UNRWA to keep health clinics openGMT 07:46 2018 Wednesday ,26 September
HRH Premier to address UN high-level health meetingsMaintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©
Send your comments
Your comment as a visitor