sumatra an earthquake in a maze
Last Updated : GMT 06:49:16
Arab Today, arab today
Arab Today, arab today
Last Updated : GMT 06:49:16
Arab Today, arab today

Sumatra: an earthquake in a Maze

Arab Today, arab today

Arab Today, arab today Sumatra: an earthquake in a Maze

Sumatra - Arabstoday

The powerful magnitude-8.6 earthquake that shook Sumatra on April 11, 2012, was a seismic standout for many reasons, not the least of which is that it was larger than scientists thought an earthquake of its type -- an intraplate strike-slip quake -- could ever be. Now, as Caltech researchers report on their findings from the first high-resolution observations of the underwater temblor, they point out that the earthquake was also unusually complex -- rupturing along multiple faults that lie at nearly right angles to one another, as though racing through a maze. The new details provide fresh insights into the possibility of ruptures involving multiple faults occurring elsewhere -- something that could be important for earthquake-hazard assessment along California's San Andreas fault, which itself is made up of many different segments and is intersected by a number of other faults at right angles. "Our results indicate that the earthquake rupture followed an exceptionally tortuous path, breaking multiple segments of a previously unrecognized network of perpendicular faults," says Jean-Paul Ampuero, an assistant professor of seismology at Caltech and one of the authors of the report, which appears online July 19 in Science Express. "This earthquake provided a rare opportunity to investigate the physics of such extreme events and to probe the mechanical properties of Earth's materials deep beneath the oceans." Most mega-earthquakes occur at the boundaries between tectonic plates, as one plate sinks beneath another. The 2012 Sumatra earthquake is the largest earthquake ever documented that occurred away from such a boundary -- a so-called intraplate quake. It is also the largest that has taken place on a strike-slip fault -- the type of fault where the land on either side is pushing horizontally past the other. The earthquake happened far offshore, beneath the Indian Ocean, where there are no geophysical monitoring sensors in place. Therefore, the researchers used ground-motion recordings gathered by networks of sensors in Europe and Japan, and an advanced source-imaging technique developed in Caltech's Seismological Laboratory as well as the Tectonics Observatory to piece together a picture of the earthquake's rupture process. Lingsen Meng, the paper's lead author and a graduate student in Ampuero's group, explains that technique by comparing it with how, when standing in a room with your eyes closed, you can often still sense when someone speaking is walking across the room. "That's because your ears measure the delays between arriving sounds," Meng says. "Our technique uses a similar idea. We measure the delays between different seismic sensors that are recording the seismic movements at set locations." Researchers can then use that information to determine the location of a rupture at different times during an earthquake. Recent developments of the method are akin to tracking multiple moving speakers in a cocktail party. Using this technique, the researchers determined that the three-minute-long Sumatra earthquake involved at least three different fault planes, with a rupture propagating in both directions, jumping to a perpendicular fault plane, and then branching to another. "Based on our previous understanding, you wouldn't predict that the rupture would take these bends, which were almost right angles," says Victor Tsai, an assistant professor of geophysics at Caltech and a coauthor on the new paper. The team also determined that the rupture reached unusual depths for this type of earthquake -- diving as deep as 60 kilometers in places and delving beneath the Earth's crust into the upper mantle. This is surprising given that, at such depths, pressure and temperature increase, making the rock more ductile and less apt to fail. It has therefore been thought that if a stress were applied to such rocks, they would not react as abruptly as more brittle materials in the crust would. However, given the maze-like rupture pattern of the earthquake, the researchers believe another mechanism might be in play. "One possible explanation for the complicated rupture is there might have been reduced friction as a result of interactions between water and the deep oceanic rocks," says Tsai. "And," he says, "if there wasn't much friction on these faults, then it's possible that they would slip this way under certain stress conditions." Adding to the list of the quake's surprising qualities, the researchers pinpointed the rupture to a region of the seafloor where seismologists had previously considered such large earthquakes unlikely based on the geometry of identified faults. When they compared the location they had determined using source-imaging with high-resolution sonar data of the topography of the seafloor, the team found that the earthquake did not involve what they call "the usual suspect faults." "This part of the oceanic plate has fracture zones and other structures inherited from when the seafloor formed here, over 50 million years ago," says Joann Stock, professor of geology at Caltech and another coauthor on the paper. "However, surprisingly, this earthquake just ruptured across these features, as if the older structure didn't matter at all." Meng emphasizes that it is important to learn such details from previous earthquakes in order to improve earthquake-hazard assessment. After all, he says, "If other earthquake ruptures are able to go this deep or to connect as many fault segments as this earthquake did, they might also be very large and cause significant damage." Along with Meng, Ampuero, Tsai, and Stock, additional Caltech coauthors on the paper, "An earthquake in a maze: compressional rupture branching during the April 11 2012 M8.6 Sumatra earthquake," are postdoctoral scholar Zacharie Duputel and graduate student Yingdi Luo. The work was supported by the National Science Foundation, the Gordon and Betty Moore Foundation, and the Southern California Earthquake Center, which is funded by the National Science Foundation and the United States Geological Survey. From sciencedaily

arabstoday
arabstoday

Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

sumatra an earthquake in a maze sumatra an earthquake in a maze

 



Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

sumatra an earthquake in a maze sumatra an earthquake in a maze

 



GMT 09:32 2017 Monday ,13 February

Asian markets extend global rally on Trump relief

GMT 16:44 2016 Saturday ,11 June

Florida health warriors deploy in war on Zika

GMT 23:29 2016 Sunday ,18 December

DEWA receives emission reduction certificate

GMT 06:58 2016 Sunday ,25 September

Circle of Light Moscow int'l festival held in Russia

GMT 15:20 2017 Tuesday ,28 November

US sternly criticizes Romanian justice plans

GMT 10:57 2017 Monday ,18 December

Haftar describes Skhirat as expired agreement

GMT 20:12 2017 Saturday ,06 May

Truck-minivan crash kills 4, injures 5 in China

GMT 09:17 2017 Saturday ,16 December

Egyptian President meets Al Hariri

GMT 13:40 2016 Saturday ,19 November

Hidden portrait of Russia's last tsar revealed

GMT 15:22 2017 Sunday ,22 January

fifty lifts England to 321-8 in 3rd ODI

GMT 02:24 2017 Thursday ,05 October

Trump digs deep to defy Clinton momentum

GMT 16:08 2017 Tuesday ,28 February

Chinese Shares Fall on Monday

GMT 03:31 2017 Thursday ,02 February

Hamas forces break up electricity crisis protests

GMT 01:19 2017 Wednesday ,12 July

Woman rescued 3 days after Turkey quake
Arab Today, arab today
 
 Arab Today Facebook,arab today facebook  Arab Today Twitter,arab today twitter Arab Today Rss,arab today rss  Arab Today Youtube,arab today youtube  Arab Today Youtube,arab today youtube

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

arabstoday arabstoday arabstoday arabstoday
arabstoday arabstoday arabstoday
arabstoday
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
arabstoday, Arabstoday, Arabstoday